D-affinity and Frobenius Morphism on Quadrics

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the D-affinity of Quadrics in Positive Characteristic

In this paper we consider sheaves of differential operators on quadrics of low dimension in positive characteristic. We prove a vanishing theorem for the first term in the p-filtration of these sheaves. This vanishing is a necessary condition for the D-affinity of these quadrics.

متن کامل

Frobenius Morphism and Semi-stable Bundles

This article is the expanded version of a talk given at the conference: Algebraic geometry in East Asia 2008. In this notes, I intend to give a brief survey of results on the behavior of semi-stable bundles under the Frobenius pullback and direct images. Some results are new.

متن کامل

Theta divisors and the Frobenius morphism

We introduce theta divisors for vector bundles and relate them to the ordinariness of curves in characteristic p > 0. We prove, following M. Raynaud, that the sheaf of locally exact differentials in characteristic p > 0 has a theta divisor, and that the generic curve in (any) genus g ≥ 2 and (any) characteristic p > 0 has a cover that is not ordinary (and which we explicitely construct). 1 Thet...

متن کامل

Stability of Direct Images under Frobenius Morphism

Let X be a smooth projective variety over an algebraically field k with char(k) = p > 0 and F : X → X1 be the relative Frobenius morphism. When dim(X) = 1, we prove that F∗W is a stable bundle for any stable bundle W (Theorem 2.3). As a step to study the question for higher dimensional X , we generalize the canonical filtration (defined by Joshi-Ramanan-Xia-Yu for curves) to higher dimensional ...

متن کامل

Direct Images of Bundles under Frobenius Morphism

Let X be a smooth projective variety of dimension n over an algebraically closed field k with char(k) = p > 0 and F : X → X1 be the relative Frobenius morphism. For any vector bundle W on X , we prove that instability of F∗W is bounded by instability of W ⊗ T(Ω X ) (0 ≤ l ≤ n(p − 1))(Corollary 4.8). When X is a smooth projective curve of genus g ≥ 2, it implies F∗W being stable whenever W is st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2008

ISSN: 1687-0247,1073-7928

DOI: 10.1093/imrn/rnm145